<b id="vfvxp"></b>
    <b id="vfvxp"><legend id="vfvxp"><strong id="vfvxp"></strong></legend></b>

    <cite id="vfvxp"><listing id="vfvxp"></listing></cite><cite id="vfvxp"><table id="vfvxp"></table></cite>

    国产精品一区二区久久精品涩爱_精品一区二区三人妻视频_国产精品亚洲w码日韩中文_久久精品中文字幕不卡一二区

    浪潮信息發(fā)布 "源2.0-M32" 開源大模型,大幅提升模算效率

    2024-05-30 17:52 3663

    北京2024年5月30日 /美通社/ -- 5月28日,浪潮信息發(fā)布"源2.0-M32"開源大模型。"源2.0-M32"在基于"源2.0"系列大模型已有工作基礎(chǔ)上,創(chuàng)新性地提出和采用了"基于注意力機(jī)制的門控網(wǎng)絡(luò)"技術(shù),構(gòu)建包含32個(gè)專家(Expert)的混合專家模型(MoE),并大幅提升了模型算力效率,模型運(yùn)行時(shí)激活參數(shù)為37億,在業(yè)界主流基準(zhǔn)評(píng)測中性能全面對(duì)標(biāo)700億參數(shù)的LLaMA3開源大模型。

    在算法層面,源2.0-M32提出并采用了一種新型的算法結(jié)構(gòu):基于注意力機(jī)制的門控網(wǎng)絡(luò)(Attention Router),針對(duì)MoE模型核心的專家調(diào)度策略,這種新的算法結(jié)構(gòu)關(guān)注專家模型之間的協(xié)同性度量,有效解決傳統(tǒng)門控網(wǎng)絡(luò)下,選擇兩個(gè)或多個(gè)專家參與計(jì)算時(shí)關(guān)聯(lián)性缺失的問題,使得專家之間協(xié)同處理數(shù)據(jù)的水平大為提升。源2.0-M32采用源2.0-2B為基礎(chǔ)模型設(shè)計(jì),沿用并融合局部過濾增強(qiáng)的注意力機(jī)制(LFA, Localized Filtering-based Attention),通過先學(xué)習(xí)相鄰詞之間的關(guān)聯(lián)性,然后再計(jì)算全局關(guān)聯(lián)性的方法,能夠更好地學(xué)習(xí)到自然語言的局部和全局的語言特征,對(duì)于自然語言的關(guān)聯(lián)語義理解更準(zhǔn)確,進(jìn)而提升了模型精度。

    Figure1- 基于注意力機(jī)制的門控網(wǎng)絡(luò)(Attention Router)
    Figure1- 基于注意力機(jī)制的門控網(wǎng)絡(luò)(Attention Router)

    在數(shù)據(jù)層面,源2.0-M32基于2萬億的token進(jìn)行訓(xùn)練、覆蓋萬億量級(jí)的代碼、中英文書籍、百科、論文及合成數(shù)據(jù)。大幅擴(kuò)展代碼數(shù)據(jù)占比至47.5%,從6類最流行的代碼擴(kuò)充至619類,并通過對(duì)代碼中英文注釋的翻譯,將中文代碼數(shù)據(jù)量增大至1800億token。結(jié)合高效的數(shù)據(jù)清洗流程,滿足大模型訓(xùn)練"豐富性、全面性、高質(zhì)量"的數(shù)據(jù)集需求。基于這些數(shù)據(jù)的整合和擴(kuò)展,源2.0-M32在代碼生成、代碼理解、代碼推理、數(shù)學(xué)求解等方面有著出色的表現(xiàn)。

    在算力層面,源2.0-M32采用了流水并行的方法,綜合運(yùn)用流水線并行+數(shù)據(jù)并行的策略,顯著降低了大模型對(duì)芯片間P2P帶寬的需求,為硬件差異較大訓(xùn)練環(huán)境提供了一種高性能的訓(xùn)練方法。針對(duì)MOE模型的稀疏專家計(jì)算,采用合并矩陣乘法的方法,模算效率得到大幅提升。

    基于在算法、數(shù)據(jù)和算力方面全面創(chuàng)新,源2.0-M32的性能得以大幅提升,在多個(gè)業(yè)界主流的評(píng)測任務(wù)中,展示出了較為先進(jìn)的能力表現(xiàn),MATH(數(shù)學(xué)競賽)、ARC-C(科學(xué)推理)榜單上超越了擁有700億參數(shù)的LLaMA3大模型。

    Figure2 源2.0-M32業(yè)界主流評(píng)測任務(wù)表現(xiàn)
    Figure2 源2.0-M32業(yè)界主流評(píng)測任務(wù)表現(xiàn)

    源2.0-M32大幅提升了模型算力效率,在實(shí)現(xiàn)與業(yè)界領(lǐng)先開源大模型性能相當(dāng)?shù)耐瑫r(shí),顯著降低了在模型訓(xùn)練、微調(diào)和推理所需的算力開銷。在模型推理運(yùn)行階段,M32處理每token所需算力為7.4GFLOPs,而LLaMA3-70B所需算力為140GFLOPs。在模型微調(diào)訓(xùn)練階段,對(duì)1萬條平均長度為1024 token的樣本進(jìn)行全量微調(diào),M32消耗算力約0.0026PD(PetaFLOPs/s-day),而LLaMA3消耗算力約為0.05PD。M32憑借特別優(yōu)化設(shè)計(jì)的模型架構(gòu),在僅激活37億參數(shù)的情況下,取得了和700億參數(shù)LLaMA3相當(dāng)?shù)男阅芩剑乃懔H為LLaMA3的1/19,從而實(shí)現(xiàn)了更高的模算效率。

    浪潮信息人工智能首席科學(xué)家吳韶華表示:當(dāng)前業(yè)界大模型在性能不斷提升的同時(shí),也面臨著所消耗算力大幅攀升的問題,對(duì)企業(yè)落地應(yīng)用大模型帶來了極大的困難和挑戰(zhàn)。源2.0-M32是浪潮信息在大模型領(lǐng)域持續(xù)耕耘的最新探索成果,通過在算法、數(shù)據(jù)、算力等方面的全面創(chuàng)新,M32不僅可以提供與業(yè)界領(lǐng)先開源大模型相當(dāng)?shù)男阅埽梢源蠓档痛竽P退杷懔ο摹?b>大幅提升的模算效率將為企業(yè)開發(fā)應(yīng)用生成式AI提供模型高性能、算力低門檻的高效路徑。M32開源大模型配合企業(yè)大模型開發(fā)平臺(tái)EPAI(Enterprise Platform of AI),將助力企業(yè)實(shí)現(xiàn)更快的技術(shù)迭代與高效的應(yīng)用落地,為人工智能產(chǎn)業(yè)的發(fā)展提供堅(jiān)實(shí)的底座和成長的土壤,加速產(chǎn)業(yè)智能化進(jìn)程。

    2.0-M32將持續(xù)采用全面開源策略,全系列模型參數(shù)和代碼均可免費(fèi)下載使用。

    代碼開源鏈接:https://github.com/IEIT-Yuan/Yuan2.0-M32

    模型下載鏈接:
    Huggingface:https://huggingface.co/IEITYuan/Yuan2-M32-hf
    ModelScope:https://modelscope.cn/models/YuanLLM/Yuan2-M32-hf/summary

    消息來源:浪潮信息
    China-PRNewsire-300-300.png
    全球TMT
    微信公眾號(hào)“全球TMT”發(fā)布全球互聯(lián)網(wǎng)、科技、媒體、通訊企業(yè)的經(jīng)營動(dòng)態(tài)、財(cái)報(bào)信息、企業(yè)并購消息。掃描二維碼,立即訂閱!
    collection
    国产精品一区二区久久精品涩爱_精品一区二区三人妻视频_国产精品亚洲w码日韩中文_久久精品中文字幕不卡一二区
      <b id="vfvxp"></b>
      <b id="vfvxp"><legend id="vfvxp"><strong id="vfvxp"></strong></legend></b>

      <cite id="vfvxp"><listing id="vfvxp"></listing></cite><cite id="vfvxp"><table id="vfvxp"></table></cite>

      枣庄市| 鄂尔多斯市| 乐安县| 贺兰县| 和田县| 东平县| 林甸县| 长泰县| 宣威市| 广元市| 武宣县| 道真| 芷江| 桂东县| 河池市| 柘荣县| 乃东县| 香河县| 宝丰县| 那曲县| 凤翔县| 山西省| 冕宁县| 蓬安县| 齐河县| 荔波县| 濉溪县| 乐亭县| 河北省| 茂名市| 临猗县| 湄潭县| 防城港市| 宁强县| 嵩明县| 罗甸县| 石门县| 泽库县| 元朗区| 时尚| 屯昌县|